Cheema Residence Addition

Structural Calculations

3606 81st Avenue S.E. Mercer Island, WA 98040 King County

Sidesway Project No. 18041.01

Prepared By:

Cheema Residence Addition May 2, 2018
Project No. 18041.01

TABLE OF CONTENTS

DESCRIPTION	PAGE NO.
Project Summary	
Structural Sketches	SS-1 to SS-3
Gravity Design	1 - 4
ateral Design	5 - 12

Cheema Residence Addition May 2, 2018
Project No. 18041.01

Project Description

Sidesway Engineering was retained by the homeowner to perform analysis and design as necessary to obtain a building permit for the proposed enclosure of their existing carport and addition of a covered entry way at the single family residence located at 3606 81st Avenue S.E. on Mercer Island.

New walls with continuous footings will be added around the perimeter of the existing carport to enclose the space into a garage. New roof framing extends beyond the garage to create a covered entry way. The existing carport and house framing will be reinforced with beams to provide sufficient capacity to support new over-framing. Lateral forces on the garage will be resisted by new shear walls and a portal frame at the garage door. All existing house framing was provided to us from the homeowner or the DC Designs construction drawings.

Scope of Work

Provide gravity and lateral calculations for the proposed structure as required to obtain a building permit. Redline structural framing requirements onto the architectural plan set. Provide mark-ups on framing details as required for permit.

Design Criteria

2015 International Building Code (IBC)

2015 International Existing Building Code (IEBC)

2015 International Residential Code (IRC)

ASCE 7-10 Minimum Design Loads for Buildings and Other Structures Applicable Material Reference Standards (ACI, MSJC, AISC, NDS)

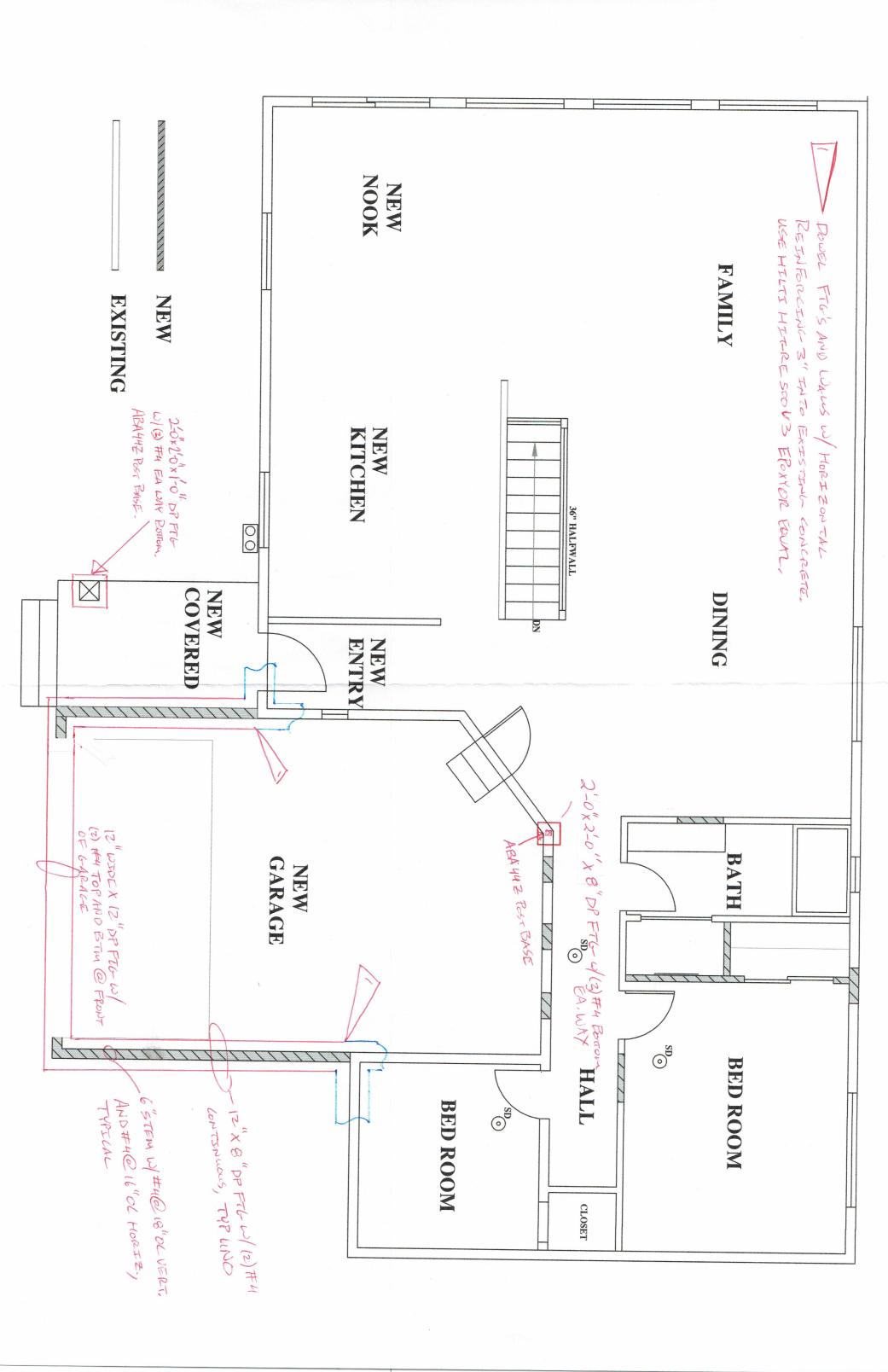
This is a Risk Category II structure designed for the following loads:

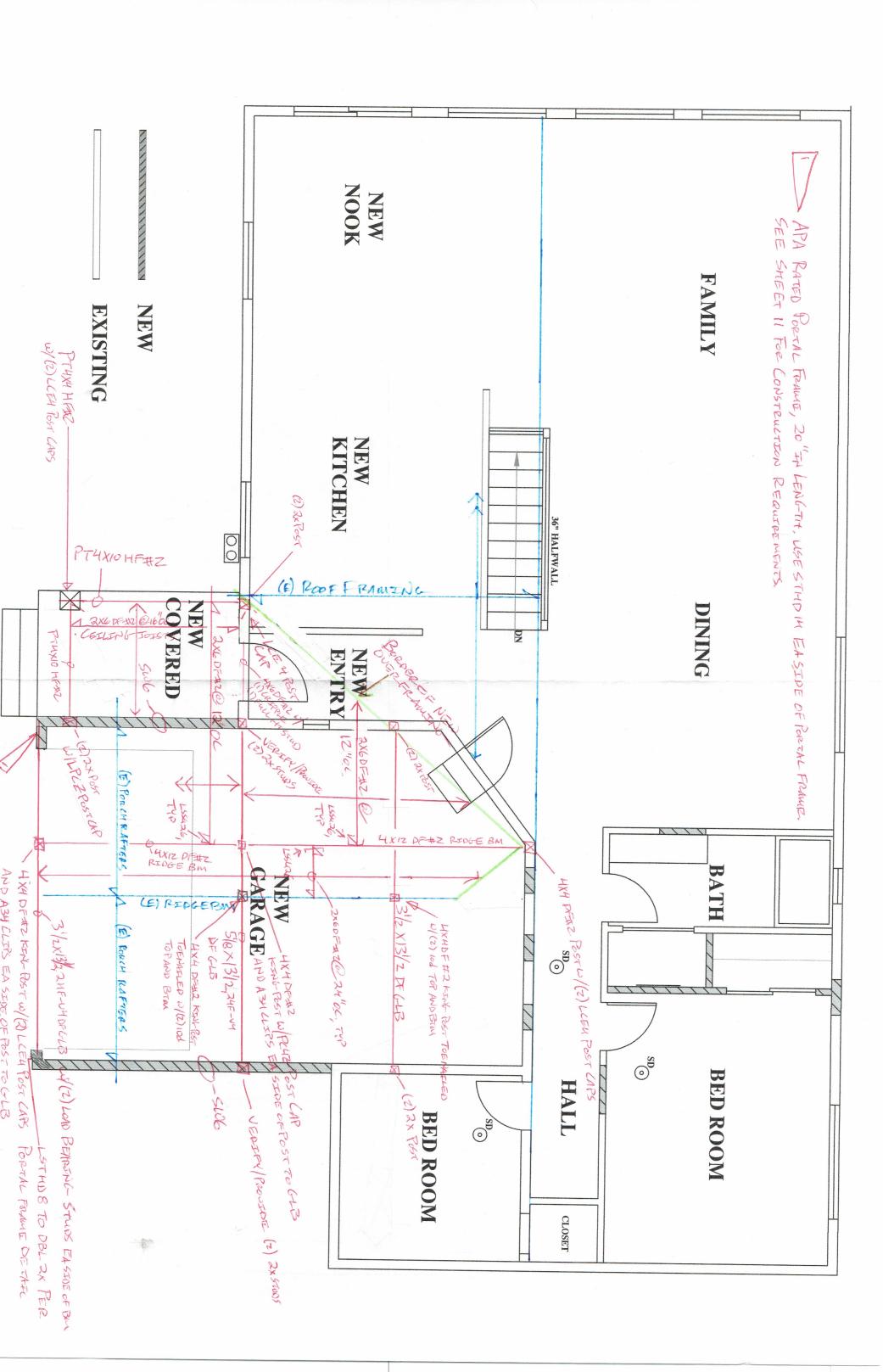
Dead Loads: 15psf (roof), 8psf (ext. walls)

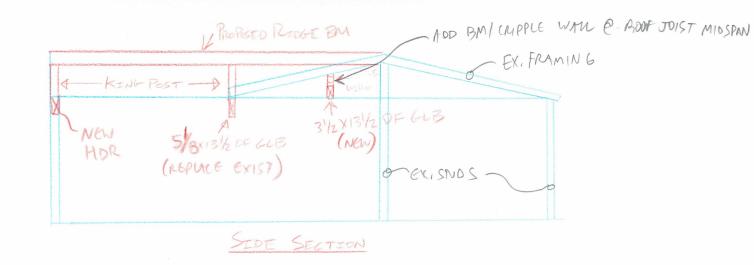
Snow Loads: 25psf

Wind Loads: 110mph, Exp. B, $K_{zt} = 1.00$ (refer to wind loads)

Seismic Loads: R = 6.5, Site Class 'D', SDC 'D' (refer to seismic loads)


Project Summary


The proposed garage as designed in the following calculations conforms to the 2015 IBC and IEBC. Refer to the calculations and DC Designs construction drawings structural framing requirements.

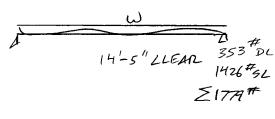

Disclaimer

This calculation package is based on the documentation that was available to us. Sidesway Engineering did not perform an as-built to verify the accuracy of the provided data and we should be contacted if there are any discrepancies with the assumptions contained within these calculations. We assume the structure has no known deterioration or damage that would adversely affect capacity.

President Sherry Cripple wan to roof Joists

New Sherr wan

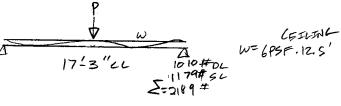
FRONT YELL


GRAVITY LOADS DEAD ROOF: 15PSF OVERFRAMING: 5PSF WALLS: 8 PSF EXTERITOR 7955 INTERTOR SNOW 25 PSF 40 PSF (RESIDENTIAL) GEOTECHNICAL 1500PGF ALLOWARIE BEARINLPRESSURE LATERAL LOADS REFER TO LITERAL SYSTEM DESIGN FOR SPECIFICS SEISMIC DL: ROOF = 1993F72.[15 PSF + 5PSF] = 39.86 KOR ZO PSF SEISMIC BASE SHEAR V=Cs.W WHERE G= 505 = 0.928 = 0.143 & GOVERNS (SMIN=0.04) (SMAX= 0.793 V= 0.143.39.86 k= 5.7 k VACO = 0.7.V = 0.7.5,7 = 3.99 K

	Description GRAVETY LOADS	Jund	Project No.
		Date 4/25/18	18041.01
JIDE JWAY	Project CHEEMA RESIDENCE	Checked UB	Sheet No.
ENGINEERING		Date 5/4/18	1 7

DUERFRAMING BEAMS AND SUPPORTS

BEAM 1 - OVERFRAMENG RIDGE


$$W=[12.2'+3.1']/2\cdot[5PSFDL+2SPSFS]$$
 $7.65'$
 $M=6264#'$
 $fb/Fb'=0.90$
 $V=1499#$
 $fv/Fv'=0.28$
 $fu=0.29=1/609$
 $f=0.39=1/443$

USE 4XIZ DF#Z

BEAM 2 - Cross BEAM

M= 15531#
$$f_{b}|_{F_{b}}=0.73$$
 \bar{A}
V= 2058 # $f_{c}|_{F_{b}}=0.19$
 $A_{cc}=0.25=1/633$ $A_{cc}=0.47=1/438$

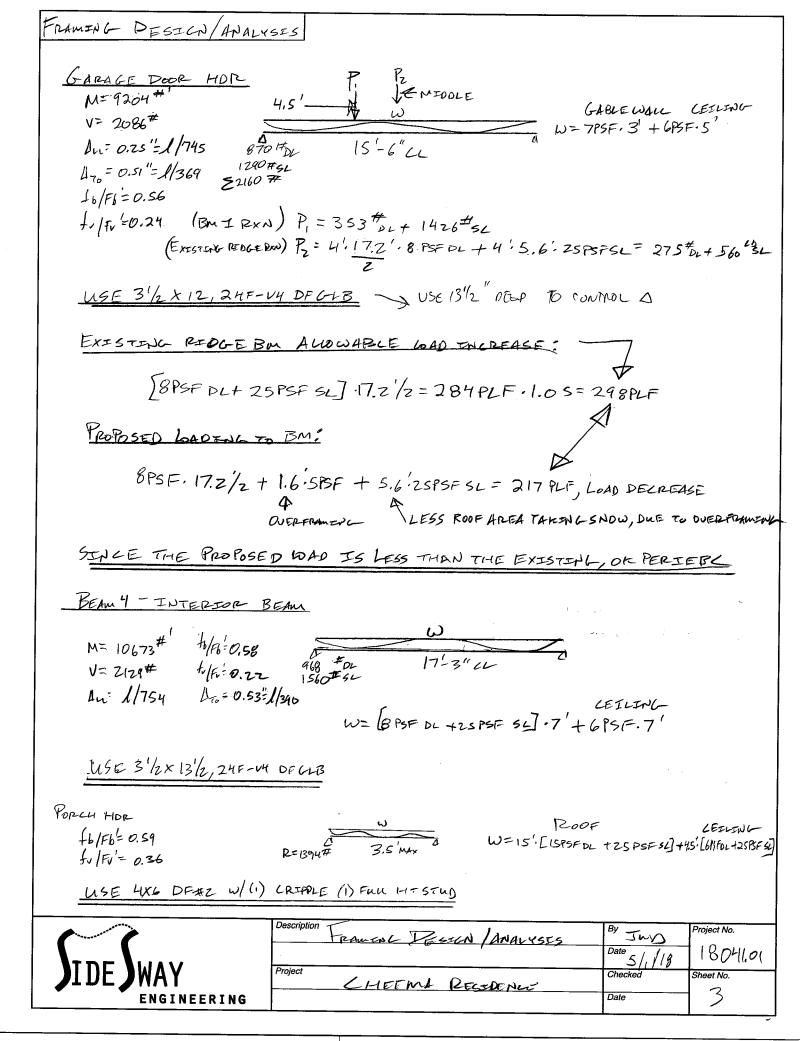
USE 31/2 × 15, 24F-V4 DF G-LB > USE 51/8 × 131/2 GCB to MATCH OTHER BM

BEAM 3 - PORCH DOOF BM

$$M = 35.59^{H'}$$
 $f_b/F_b' = 0.92$
 $V = 1077^{H}$ $f_v/F_v' = 0.37$
 $A = 0.38^{c}_{-1}/359$

USE PT 4X10 HF#Z

OVERFRAMENCE RAFTERS (LONG SPAN) M=555# fb/Fb=0.57



USE 2x60FAZ@ 12" OL. (LONCER SPAN)

FOR SPANS <6', USE 2x6 OF #2 @ 24"O.C. fb/F6 0.24

E	Description	By JMO	Project No.
		Date	18041.01
F	Project CHEEMA RESIDENCE	Checked (13)	Sheet No.
		Date 4/2/18	

DIAPHRAUM/ CHOPD ANALYSIS

TYPILAL 1/2" SHEATHING ADEQUATE W/86@6"/12"O.C.

LHORD

$$T = C = \frac{\omega \ell^2}{8b} = \frac{115.9RLF \cdot (5.3')^2}{8 \cdot 18.3'} = 185.3^{Lb}$$

TYPICAL DOUBLE TOPPLATE SPLICE NATLEDL ADEQUATE

FOUNDATION

INTERIOR SPREAD FTG DESIGN

USE 2'-0" X 2-0" X 8" DP W/(3) # 4 EA WAY BOTTOM

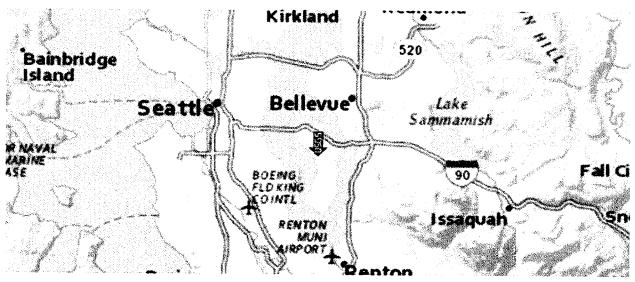
PORCH SPREAD FIG

USE 2-0" x 2-0" x 12" DP FTG W/ (3) #HEA WAY

DEAPHRAGM/CHUSED	By JMD Date 4/26/18	Project No.
Project LHEEMA RESIDENCE	Checked B Date S/2/18	Sheet No.

USGS Design Maps Summary Report

User-Specified Input


Building Code Reference Document ASCE 7-10 Standard

(which utilizes USGS hazard data available in 2008)

Site Coordinates 47.57875°N, 122.23044°W

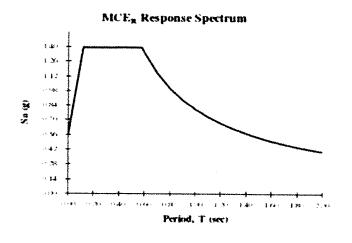
Site Soil Classification Site Class D - "Stiff Soil"

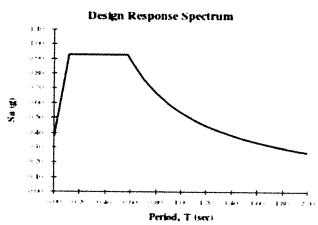
Risk Category I/II/III

USGS-Provided Output

$$S_3 = 1.393 g$$

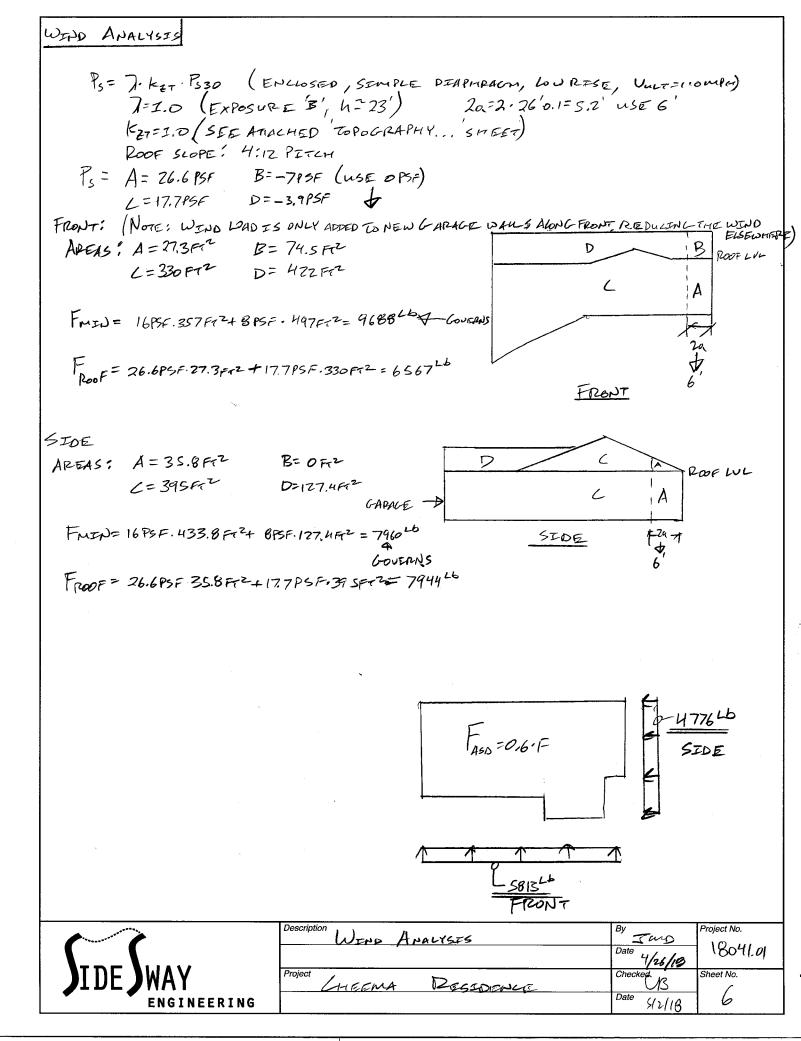
$$S_{res} = 1.393 g$$


$$S_{ps} = 0.928 g$$

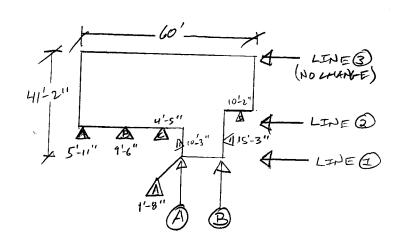

$$S_1 = 0.536 g$$

$$S_{mi} = 0.803 g$$

$$S_{01} = 0.536 g$$


For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.




Description	USGS Data	^{By} JMD	Project No.
		Date 04/24/18	18041.01
Project	Cheema Residence Remodel	Checked A	Sheet No.
		Date S/4/8	3

LATERAL LOAD DISTRIBUTION

LINE D:

LINE (2):

LINE 3:

EQ = 3990^{L6} . 763 Fr² = 1528^{L6}

NO CHANGE IN LATERAL WAD TO THIS

WIND = 4776^{L6} 14.2' = 1646^{L6}

WIND = 168C

Description	1.	
LATERAL LOAD DESTREBUTEDN	By Juno	Project No.
Project	Date 4/26/18	(8041.01
CHEEMA RESEDENCE	Checked (13)	Sheet No.
	Date S/2/18	8

	Shear Line#	Α	Shear Line#	В
	Lw (ft)	10.25	Lw (ft)	15.25
	W to Line (Lb)	712	W to Line (Lb)	712
	E to Line (Lb)	560	E to Line (Lb)	560
	SW Ht (ft)	8	SW Ht (ft)	8
	Wall Wt (psf)	8	Wall Wt (psf)	8
I	Rf/Fl wt (psf)	15	Rf/Fl wt (psf)	15
	Dist. to HD (ft)	0.25	Dist. to HD (ft)	0.25
l	Wind U.S. plf	69.5	Wind U.S. plf	46.7
I	EQ U.S. plf	54.6	EQ U.S. plf	36.7
I	SDS	0.928		
	SW Needed	SW6	SW Needed	SW6
ŧ				

Line A

SW#	Trib	Length	Gross (W)	Gross (EQ)	(0.6*DL)	(.614sds)DL	ULFA (W)	Net (W)	ULFA (EQ)	Net (EQ)
1	11	10.25	569.60	448.00	704.175	551.7		-134.6		-103.7
1						Holdown Reg'd SW 1	None			

Line B

#	Trib	Length	Gross (W)	Gross (EQ)	(0.6*DL)	(.614sds)DL	ULFA (W)	Net (W)	ULFA (EQ)	Net (EQ)
1	11	15.25	379.73	298.67	1047.675			-667.9		-522.2
1						Holdown Reg'd SW 1	None			

0	
JIDE JWAY	
ENGINEERING	ì

Description	Shear Wall Design	Ву	JMD	Project No.
	Roof LVL	Date	· 4/26/2018	10041601
Project	Cheema	Checked	UB	Sheet No.
		Date	5/2/14	7

Shear Line#	1	Shear Line#	2
Lw (ft)	0	Lw (ft)	30.02
W to Line (Lb)	742	W to Line (Lb)	2388
E to Line (Lb)	467	E to Line (Lb)	1996
SW Ht (ft)	8	SW Ht (ft)	8
Wall Wt (psf)	8	Wall Wt (psf)	8
Rf/Fl wt (psf)	15	Rf/Fl wt (psf)	15
Dist. to HD (ft)	0.25	Dist. to HD (ft)	0.25
Wind U.S. plf	#DIV/0!	Wind U.S. plf	79.5
EQ U.S. plf	#DIV/0!	EQ U.S. plf	66.5
SDS	0.928		
SW Needed	Portal Frame	SW Needed	SW6

Line 1

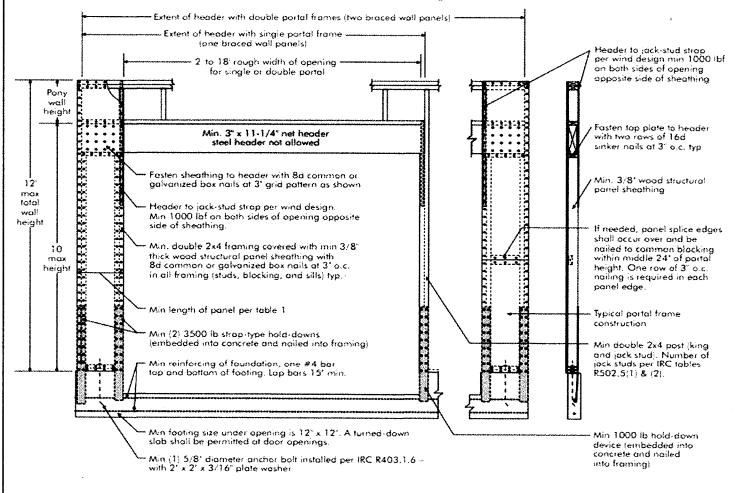
Use APA Rated Portal Frame. See next page for design criteria.

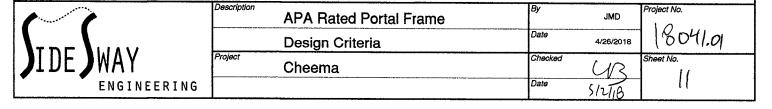
Line 2

#	Trib	Length	Gross (W)	Gross (EQ)	(0.6*DL)	(.614sds)DL	ULFA (W)	Net (W)	ULFA (EQ)	Net (EQ)
Α	15	5.9	664.53	555.45	511.53	400.8		153.00		154.68
Α						Holdown Req'd SW A	Negligible			
В	15	9.5	653.58	546.29	823.65	645.3		-170.07		-99.01
В						Holdown Req'd SW B	None		·	
С	15	4.42	674.53	563.80	383.214	300.2		291.31		263.57
С						Holdown Reg'd SW C	Negligible			
D	15	10.2	652.37	545.28	884.34	692.9	T	-231.97		-147.57
D						Holdown Reg'd SW D	NONE	-		

CONSIDER EXISTANG SHEATHING ON MONSE ADEQUATE & NO HOLDOWNS ARE RED'D

0	•
)IDE	WAY
	11/11
L	ENGINEERING


Description	Shear Wall Design	Ву	JMD	Project No.
	Roof LVL	Date	4/26/2018	18041.01
Project	Cheema	Checked	Ub	Sheet No.
		Date	Stalie	10


Minimum Width	Maximum Height (ft)	Allowable Design (ASD) \		
(in.)		Shear(*.f) (lbf)	Deflection (in.)	Load Facto
14	8	850	0.33	3.09
10	10	625	0.44	2.97
24	8	1,675	0.38	2.88
24	10	1,125	0.51	3.42

Foundation for Wind or Seismic Loading(a,b,c,d)

- (a) Design values are based on the use of Douglas-fir or Southern pine framing. For other species of framing, multiply the above shear design value by the specific gravity adjustment factor = (1 = (0.5 = SG)), where SG = specific gravity of the actual framing. This adjustment shall not be greater than 1.0.
- (b) For construction as shown in Figure 1.
- (c) Values are for a single portal-frame segment (one vertical legiand a portion of the header). For multiple portal-frame segments, the allowable shear design values are permitted to be multiplied by the number of frame segments (e.g., two = 2x, three = 3x, etc.).
- (d) Interpolation of design values for heights between 8 and 10 feet, and for portal widths between 16 and 24 inches, is permitted.
- (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design.
- (f) If story drift is not a design consideration, the tabulated design shear values are permitted to be multiplied by a factor of 1.15. This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnate (e) above.

Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs

NOTES: 1. REFER	SW6	ТҮРЕ	
TO THE SHEAR W	15/32" ONE SIDE	APA-RATED SHEATHING	
NOTES: 1. REFER TO THE SHEAR WALL DETAIL IN THE TYPICAL WOOD FRAMING DETAILS.	2x STUD AND BLKG	MIN FRAMING AT ADJOINING PANEL EDGES	
CAL WOOD FRAMING	0.131"Ø x 2 1/2" @ 6" OC	NAILING AT PANEL EDGES	
DETAILS.	LTP4 OR A35 @ 26" OC	RIM JOIST OR BLOCK CONN TO TOP PLATE	
	0.131"Ø x 3 1/4" @ 6.5" OC	SILL PLATE NAILING TO RIM/BLKG BELOW	
	5/8"Ø AB @ 5'-8" OC OR 1/2"Ø AB @ 3'-10" OC	SILL PLATE ANCHOR BOLT TO SLAB OR FOUNDATION	
	2x	FOUNDATI ON SILL PLATE SIZE	
	242	SHEAR CAPACITY (PLF)	

SHEAR WALL SCHEDULE

- 2. THE VALUES IN THIS TABLE ARE BASED ON HF GRADE STUDS AND HF GRADE PLATES & RIM/BLOCKING.
 3. NAILS AT ADJOINING PANEL EDGES SHALL BE STAGGERED EACH SIDE OF THE COMMON JOINT.
 4. INTERMEDIATE FRAMING TO BE WITH 2x MINIMUM MEMBERS. FIELD NAILING 12" OC MAXIMUM.
 5. AT ALL SILL PLATE ANCHOR BOLTS IN 2x6 WALLS, INSTALL 3 GA x 3" x 4 1/2" PLATE WASHERS WITH THE EDGE OF PLATE WASHER WITHIN 1/2" OF SHEATHED EDGE. FOR 2x4 STUD WALLS, INSTALL 3 GA. x 3" x 3" PLATE WASHERS.
- 6. PROVIDE A MINIMUM OF 7" EMBEDMENT FOR AB INTO FOUNDATION OR STEM WALL.
 7. 7/16" SHEATHING MAY BE USED IN PLACE OF 15/32" SHEATHING PROVIDED ALL STUL 7/16" SHEATHING MAY BE USED IN PLACE OF 15/32" SHEATHING PROVIDED ALL STUDS ARE SPACED 16" OC OR PANELS ARE APPLIED WITH LONG DIMENSION ACROSS STUDS.